کوچکترین موجودی که میتوانید تصور کنید، کدام است؟ کوچکترین ذره چه؟ احتمالاً در پاسخ به این سؤال کلماتی مانند «اتم» یا «الکترون» به ذهنتان رسید. اما داستان به اتم یا الکترون ختم نمیشود. ذراتی بسیار کوچکتر از الکترون هم وجود دارند که تا قرن پیش ناشناخته باقی مانده بودند.
فیزیک ذرات یا فیزیک انرژی بالا چیست؟
با مطالعه فیزیک ذرات وارد دنیای شگفتانگیز ذرات زیراتمی میشویم؛ ذراتی که برخلاف انتظار عمل میکنند و ویژگیهای منحصربهفردی دارند.
با تعریف سادهای از فیزیک ذرات شروع میکنیم. فیزیک ذرات به مطالعه ذرات بنیادی که شامل ماده و پادماده است، میپردازد. در قلمروی فیزیک ذرات همهچیز به داشتن جرم (ماده) یا نداشتن جرم (تابش) و تعامل مابین آنها مربوط است. فیزیک ذرات را فیزیک انرژی بالا نیز مینامند؛ بهدلیل اینکه برخی از ذرات فقط در انرژیهای بالا واکنش نشان میدهند.
برای ورود به فیزیک ذرات باید از دل سه مسیر بگذریم: مسیر اول تاریخچه اتم، دومی شروع انقلابی علم مکانیک کوانتوم و سومی تولد مدل استاندارد فیزیک ذرات.
تصویرسازی اتم – کپیرایت: phys.org
مسیر اول؛ انسان در پی کشف کوچکترین ذره سازنده ماده
فلسفه اصلی کشف کوچکترین مواد سازنده جهان که اکنون به نام فیزیک ذرات شناخته میشود، حداقل به ۵۰۰ سال قبل از میلاد برمیگردد؛ زمانی که فیلسوف یونانی «لئوکیپوس» و شاگرد او «دموکریتوس» این ایده را مطرح کردند که ماده از ذرات نامرئی کوچک و غیرقابل تقسیمی تشکیل شده است که آنها را «اتم» نامیدند.
کلمه اتم در اصل کلمه یونانی «اتوموس» بهمعنای غیرقابل تقسیم است. از وقتی این کلمه در یونان باستان بهعنوان کوچکترین اجزای سازنده جهان معرفی شد، تا پیش از کشفیات جدید چند قرن پیش توسط مردم نادیده گرفته شد. فلسفه ارسطویی که میگفت ماده از چهار عنصر زمین، آتش، هوا و آب تشکیل شده است، تا سالها پابرجا ماند.
اوایل قرن نوزدهم، نظریه اتمی ماده، با کار شیمیدان انگلیسی «جان دالتون» که مطالعات او نشان داد که هر عنصر شیمیایی خصوصیات منحصربهفردی دارد، مورد استقبال قرار گرفت. در پایان قرن مشخص شد اتم همانطور که لئوکیپوس و دموکریتوس تصور میکردند، تقسیمناپذیر نیستند و از ذرات کوچکتری ساخته شدهاند.
دموکریتوس – کپیرایت: موزه هنر شهرستان لسآنجلس (LACMA)
مسیر شناخت ذرات زیراتمی با کشف تصادفی «هنری بکرل» شروع شد و با کشف الکترون توسط «تامسون»، نوترون توسط «چادویک» و پروتون توسط «رادرفورد»، این دیدگاه که اتم کوچکترین سازنده ماده است، به مرور کمرنگ شد و هماکنون دیگر کاربردی ندارد.
البته جالب است بدانید علیرغم اینکه اتم کوچکترین ذره سازنده ماده نیست، اما همچنان در کتابهای درسی بهخصوص کتابهای مدارس با همین عنوان معرفی میشود.
مسیر دوم؛ انقلاب مکانیک کوانتوم و شروع مسیر جدید فیزیک
راه ورود به فیزیک ذرات از دل علم مکانیک کوانتوم میگذرد. دنیای کوانتوم که در آن تقارن و عدم قطعیت حرف اول را میزنند، دنیای ناشناختههاست؛ اینجا دیگر حرفی از قطعیت و پیشبینی وجود ندارد، همهچیز محتمل است اتفاق بیفتد یا نیفتد. اساساً تمامی نظریههای فیزیک ذرات در چهارچوب نظریه میدانهای کوانتومی (QFT) توصیف میشوند.
نظریه میدانهای کوانتومی (QFT)
به بیان ساده، نظریه میدان کوانتومی، مجموعهای از اصول فیزیکی است که عناصر مکانیک کوانتومی را با عناصر نسبیت ترکیب میکند تا رفتار ذرات زیراتمی و برهمکنشهای آنها را از طریق میدانهای مختلف نیرو توضیح دهد.
نظریههای میدان کوانتومی مدرن به دو مبحث مهم تقسیم میشوند؛ اولین مبحث «الکترودینامیک کوانتومی» است که برهمکنش ذرات باردار الکتریکی و نیروی الکترومغناطیسی را توصیف میکند و دومین مبحث «کرومودینامیک کوانتومی» که نشاندهنده برهمکنش کوارکها و نیروی قوی است.
اساساً نظریه میدانها برای توضیح پدیدههای فیزیک ذرات مانند برخوردهای پرانرژی که در آن ذرات زیراتمی ممکن است ایجاد یا نابود شوند، طراحی شده است.
الکترودینامیک کوانتومی (QED)
در سال ۱۹۲۸ فیزیکدان انگلیسی دیراک، یک معادله موج را که حرکت و اسپین الکترونها را توصیف میکرد با دربرگرفتن اصول مکانیک کوانتومی و نظریه نسبیت خاص، کشف کرد و پایه های نظریه الکترودینامیک کوانتومی را بنا نهاد.
این نظریه در اواخر دهه ۱۹۴۰ توسط ریچارد فاینمن، جولیان اس. شوینگر و توموناگا شینیچیرو، مستقل از یکدیگر، اصلاح و بهطور کامل توسعه یافت. نظریه بر این ایده استوار است که ذرات باردار (مثلاً الکترونها و پوزیترونها) با گسیل و جذب ذراتی که نیروهای الکترومغناطیسی را منتقل میکنند (فوتون) برهمکنش میکنند.
کپیرایت: مجله کوانتا
الکترودینامیک کوانتومی نظریه میدان کوانتومی توصیفی برای چگونگی برهمکنش ذرات باردار با میدان الکترومغناطیسی است که نهتنها تمام برهمکنشهای نور با ماده، بلکه برهمکنشهای ذرات باردار با یکدیگر را نیز ریاضیوار توصیف میکند.
الکترودینامیک کوانتومی یک نظریه نسبیتی است که در هر یک از معادلات آن، نظریه نسبیت خاص آلبرت انیشتین گنجانده شده است. رفتار اتمها و مولکولها اساساً ماهیت الکترومغناطیسی دارد، پس میتوانیم تمام فیزیک اتمی را آزمایشگاه بزرگی برای تأیید الکترودینامیک کوانتومی در نظر گرفت. برخی از دقیقترین آزمایشهای این نظریه، آزمایشهایی است که با خواص ذرات زیراتمی معروف به «میونها» سروکار دارند.
کرومودینامیک کوانتومی (QCD)
کرومودینامیک کوانتومی نظریهای است که تلاش میکند «نیروی هستهای قوی» را توصیف میکند. در این نظریه، کنش و برهمکنش الکترومغناطیسی ذرات باردار از طریق گسیل و جذب فوتونهای بدون جرم که بیشتر با عنوان «ذرات حامل نیرو» یا همان فوتون شناخته میشوند، توصیف میشوند.
کرومودینامیک کوانتومی وجود ذرات حامل نیرو به نام «گلوئون» را پیشبینی میکند که نیروی قوی را بین ذرات ماده حامل «رنگ» که نوعی بار قوی است، منتقل میکند.
تفاوت بین الکترودینامیک کوانتومی و کرومودینامیک کوانتومی در این است که در نظریه اول تنها یک نوع بار الکتریکی وجود دارد که میتواند مثبت یا منفی باشد و با بار و ضدبار مطابقت دارد. در مقابل، برای توضیح رفتار ذرات در کرومودینامیک کوانتومی، باید سه نوع مختلف بار رنگی وجود داشته باشد که هر کدام میتوانند بهصورت رنگ یا ضدرنگ باشند. سه نوع بار در قیاس با رنگهای اصلی نور قرمز، سبز و آبی نامیده میشوند؛ اگرچه هیچ ارتباطی بین رنگ در این نظریه با رنگ معمولی که میشناسیم وجود ندارد.
تفاوت فیزیک ذرات با سایر گرایشها
برخلاف شباهتهای اسمی، فیزیک ذرات با فیزیک هستهای و فیزیک اتمی تفاوت دارد. فیزیک هستهای بهطور متمرکز هسته اتم و ساختمان آن را مطالعه میکند و کمترین تعامل را با سؤالهای «پروتون از چه ساخته شده است؟» یا «ساختار ذرات زیراتمی چگونه است؟» دارد. همچنین فیزیک اتمی به مطالعه اتم، الکترونها و برانگیختگی اتم توسط فوتون میپردازد. درضمن، هیچکدام از سه حوزه فیزیک ذرات، هستهای و اتمی مطالعه مقیاسهای کمی بزرگتر از اتم مانند مولکول را در بر نمیگیرند.
مسیر سوم؛ تولد مدل استاندارد
پس از تولد علم فیزیک نوین و پیشبینی معادلات برای وجود ذرات دیگر، مدل استاندارد طی گذشت زمان شکل گرفت. در دهه ۱۹۷۰، فیزیکدانان مجموعهای از معادلات را برای توصیف ذرات و برهمکنشهای آنها ایجاد کردند. این معادلات مجموعاً یک مدل مختصر را تشکیل دادند که اکنون بهعنوان «مدل استاندارد فیزیک ذرات» شناخته میشود.
هدف مدل استاندارد فقط توصیف ذرات زیراتمی حامل جرم مانند کوارکها و ذرات واسطه مانند فوتونها و تعامل مابین این دو نیست، بلکه این مدل تلاش میکند نیروهای بنیادین را نیز توضیح دهد.
نیروهای بنیادین؛ حاکمان حقیقی جهان
نیروهای بنیادین که شامل نیروی الکترومغناطیس، نیروی گرانش، نیروی هستهای ضعیف و قوی هستند، بر نحوه تعامل اجسام یا ذرات و چگونگی تجزیه ذرات خاص نظارت دارد. تمام نیروهای شناختهشده طبیعت را میتوان با نیروهای بنیادی توجیه کرد. نیروهای بنیادی براساس چهار معیار مشخص میشوند: انواع ذرات که نیرو را حمل میکنند، قدرت نسبی نیرو، محدودهای که نیرو بر آن تأثیر میگذارد و ماهیت ذرات واسطه.
گرانش و الکترومغناطیس مدتها قبل از کشف نیروهای قوی و ضعیف شناخته شده بودند. اثرات گرانشی و الکترومغناطیسی روی اجسام معمولی بهراحتی قابل تشخیص است. نیروهای بنیادین اصولاً با قدرت نسبی خود ردهبندی میشوند؛ نیروی گرانش بهعنوان ضعیفترین نیرو و نیروی هستهای قوی بهعنوان قویترین نیرو شناخته میشود. در رتبه دوم نیروی الکترومغناطیس و در رتبه سوم نیروی هستهای ضعیف مینشیند.
کپیرایت: Quanta Mag
نیروی گرانشی
نیروی گرانشی توسط اسحاق نیوتن در قرن هفدهم توصیف شد. این نیرو بر تمامی اجرام تأثیر میگذارد؛ اگرچه این تأثیر میتواند بسیار بزرگ (در سیارات و ستارهها) با بسیار کوچک (در اتمها) باشد. گرانش عامل اصلی افتادن سیب بر سر آدمهایی است که زیر سایه درخت درحال استراحتند.
نیروی الکترومغناطیسی
نیروی الکترومغناطیسی که در قرن نوزدهم توسط جیمز کلارک ماکسول به معادلات ریاضی تبدیل شد، مسئول دفع بارهای مشابه و جذب بارهای الکتریکی مخالف است. این نیرو همچنین رفتار شیمیایی ماده و خواص نور را توضیح میدهد.
نیروی هستهای قوی
اگر با نگاهی باریکبینانه به قضیه نگاه کنیم، نتیجه میگیریم که اگر نیروی الکترومغناطیس تنها نیروی تأثیرگذار بر اتم بود، اساساً دیگر اتمی وجود نداشت؛ چرا که پروتونها همدیگر را دفع کرده و الکترونها را از مدار خود بهسمت هسته جذب میکردند.
پس چه چیزی هسته را از متلاشیشدن بازمیدارد و الکترونها را در مدار خود نگه میدارد؟ دانشمندان پاسخ این سؤال را در قرن بیستم، پس از کاوش هسته اتم یافتند. عامل نگهدارنده پروتون کنار پروتون نیروی موسوم به «نیروی قوی» است.
نیروی قوی بین کوارکها، اجزای تشکیلدهنده همه ذرات زیراتمی، ازجمله پروتون و نوترون، عمل میکند و به همین دلیل با عنوان نیروی هستهی قوی نیز شناخته میشود.
سؤالی که بهوجود میآید این است که چرا تأثیرات نیروی قوی را در زندگی روزمره نمیبینیم؟ نیروی قوی همانطور که از اسم آن مشخص است، بسیار قوی اما کوتاهبرد است، یعنی فقط در مقیاس هسته اتم عمل میکند و در فاصله بیشتر تأثیر خود را از دست میدهد.
نیروی هستهای ضعیف
نیروی ضعیف در اشکال خاصی از واپاشی رادیواکتیو و فروپاشی ذرات زیراتمی ناپایدار مانند مزونها آشکار میشود. این نیرو در واکنش «همجوشی هستهای» که سوخت خورشید و سایر ستارگان را تأمین میکند نیز نقش اصلی را بازی میکند.
همجوشی هستهای هنگامی اتفاق میافتد که دو پروتون از طریق نیروی ضعیف برهمکنش کنند و هسته دوتریوم را تشکیل دهند که با آزادشدن مقدار زیادی انرژی برای تولید هلیوم همراه است
ذرات بنیادی از طریق برهمکنش یا نیروی ضعیف و با تبادل ذرات حامل نیرو که به نام ذرات بوزونهای عددی شناخته میشوند، برهمکنش میکنند. همچنین الکترونها که جزو ذرات زیراتمی بنیادی هستند، نیروی ضعیف را تجربه میکنند؛ اما نیروی قوی روی آنها تأثیر ندارد.
کپیرایت: Quanta Mag
ذرات بنیادین؛ کوچکترین سازندههای جهانی که میشناسیم
امروزه ذرات زیراتمی در مدل استاندارد با عنوان «ذرات بنیادین» شناخته میشوند. ذره بنیادی یعنی ذرهای که ساختار داخلی ندارد و دارای هندسه نقطهای است. ذرات بنیادی دارای خواصی مانند بار الکتریکی، اسپین، جرم، میدان مغناطیسی و سایر خصوصیات پیچیده هستند.
اگرچه این موضوع با نتایج تجربی سازگار است، اما همچنان محققان بر این باورند که اگر ذرات را تا فاصله بسیار کوچک (۱۰ با ۳۵ تا صفر جلوی آن متر) بکاویم، شاید بتوانیم ساختار ذرات بنیادی را ببینیم. اما درحالحاضر این کار شدنی نیست؛ چرا که برای بهوجودآوردن این شرایط نیازمند تولید انرژی معادل آنچه در مهبانگ بوده است، هستیم.
کوارکها؛ اساسیترین ذرات بنیادی
به هر عضو گروهی از ذرات بنیادی که با استفاده از نیروی قوی برهمکنش میکنند، «کوارک» میگوییم. کوارکها یکی از اجزای بنیادی تشکیلدهنده ذرات هادرونی هستند. کوارکها در طبیعت بهصورت انفرادی وجود ندارند؛ یعنی هیچ کوارکی را نمییابیم که بهتنهایی برهمکنش داشته باشد. ذراتی به نام «گلوئون» با مبادلهشدن بین کوارکها، آنها را کنار هم درون هادرونها نگه میدارند.
هادرونها؛ اثر هنری کوارکها
ذراتی که از دو یا سه کوارک تشکیل شده باشند، هادرون نامیده میشوند. هادرونها به دو زیرمجموعه باریونها و مزونها تقسیم میشوند که باریونها از سه کوارک و مزونها از دو کوارک تشکیل شدهاند.
باریونها
باریونها ذرات زیراتمی سنگین که از کوارک تشکیل میشوند و به خانواده هادرونها تعلق دارند. باریونها باید حداقل دارای سه کوارک باشند. پایدارترین باریونها، پروتونها و نوترونها هستند. پروتون از دو کوارک بالا و یک کوارک پایین و نوترون از از یک کوارک بالا و دو کوارک پایین تشکیل شده است.
در فیزیک هستهای به پروتون و نوترون، نوکلئون نیز گفته میشود. هر باریونی که نوکلئون نباشد، «هیپرون» نام دارد. هیپرونها ذرات زیراتمی با عمر بسیار کوتاه هستند.
مزونها
نوع دوم هادرونها با نام مزونها شناخته میشوند. این ذرات از تعداد مساوی از کوارک و پادکوارک تشکیل شده و به کمک نیروی قوی کنار هم قرار گرفتهاند. معمولاً مزونها دارای یک کوارک و یک پادکوارک هستند.
مزونها عمر کوتاهی دارند و جزو ناپایدارترین ذرات بنیادی هستند که عمر متوسط آنها به چند صدم میکروثانیه نیز نمیرسد.
جدول تناوبی فیزیک ذرات
احتمالاً جدول تناوبی مندلیف را میشناسید؛ جدول تناوبی فیزیک ذرات کمی پیچیدهتر از آن است. به توصیف این جدول میپردازیم؛ در این جدول، تمامی ذرات در دو گروه «فرمیونها» و «بوزونها» قرار میگیرند. علاوهبراین، این مدل تمام ذراتی که میشناسیم را به سه گروه کوارکها، لپتونها و واسطهها تقسیم میکند.
کوارکها و لپتونها بهدلیل پیروی از آمار فرمی-دیراک در گروه فرمیونها قرار میگیرند و مابقی ذرات بهدلیل پیروی از آمار بوز-اینشتین در گروه بوزونها قرار میگیرند.
جدول تناوبی فیزیک ذرات
فرمیونها
فرمیون به ذراتی گفته میشود که از «اصل طرد پائولی» که توسط فیزیکدان اتریشی، «ولفگانگ پائولی» بیان شد، پیروی میکنند. براساس این اصل، دو ذره نمیتوانند همزمان در یک حالت یا پیکربندی مشخص باشند. این اصل زمینهساز تجمع الکترونها در یک اتم در اوربیتالهای متوالی در اطراف هسته است و درنتیجه از فروپاشی اتم ماده جلوگیری میکند. فرمیونها بهصورت ذره و پادذره تولید میشوند.
کوارکها (Quarks)
همانطور که قبلاً به تعریف کوارکها پرداختیم، این ذرات جزو اساسیترین ذرات سازنده مواد و متعلق به گروه فرمیونها هستند.
کوارکها انواع متفاوتی دارند اما شایعترین آنها در دو نوع مشاهده میشوند: کوارک بالا با دو سوم بار الکتریکی و کوارک پایین با یک سوم بار الکتریکی. کوارکهای بالا و پایین میتوانند چپدست یا راستدست باشند که نحوه چرخش ساعتگرد و پادساعتگرد نسبت به جهت حرکت آنها را تعیین میکند.
کوارکهای چپدست و راستدست میتوانند بهوسیله نیروی ضعیف به یکدیگر تبدیل شوند. این اتفاق با تبادل ذرهای به نام بوزون W که یکی از حاملهای نیروی ضعیف است، صورت میگیرد که دارای بار الکتریکی یک یا منفی یک است.
همانطور که در جدول تناوبی فیزیک ذرات مشاهده میکنید، علاوه بر کوارک بالا و پایین، چند نوع کوارک دیگر ازجمله کوارک افسون، شگفت، ته و سر وجود دارد.
لپتونها
هر عضوی از ذرات زیراتمی فرمیونها که فقط تحت تأثیر نیروی الکترومغناطیسی، نیروی ضعیف و نیروی گرانشی قرار میگیرند، «لپتون» میگوییم. طبق تعریف، نیروی قوی تأثیری روی این ذرات نمیگذارد.
لپتونها میتوانند دارای یک واحد بار الکتریکی یا خنثی باشند. لپتونهای باردار به سه دسته الکترون، میون و تاو تقسیم میشوند که هر کدام دارای بار منفی و جرم مشخصی است.
الکترونها جزو سبکترین لپتونها با جرمی حدود ۱ بر ۱۸۴۰ برابر جرم پروتون است. میونها با جرمی بیش از دویستبرابر الکترونها، سنگینتر هستند. تاو بهعنوان سنگینترین لپتون دارای جرمی تقریباً برابر با ۳۷۰۰ برابر جرم الکترون است.
همچنین لپتونها دارای پادذرهای به نام «آنتی لپتون» هستند که جرم یکسانی دارند اما تمامی خواص دیگر آنها دقیقاً برعکس این ذرات است.
سومین ویژگی مهم لپتونها، تکانه زاویهای ذاتی یا اسپین آنها است. این ذرات با مقادیر نیمهصحیح اسپین خود مشخص میشوند. بهنظر میرسد تعداد کل لپتونها در هر واکنش ذرهای یکسان باقی میماند و از نظر ریاضی عدد کل لپتون، یعنی تعداد لپتونها منهای تعداد آنتی لپتونها ثابت است.
نوترینوها؛ شریک همیشگی لپتونها
هر لپتون شریک بدون بار با جرم بسیار کم به نام «نوترینو» دارد؛ یعنی الکترون-نوترینو، میون-نوترینو و تاو-نوترینو. نوترینوها همچنین دارای یک پادذره به نام پادنوترینو هستند.
خواص اساسی الکترون-نوترینو که بدون بار الکتریکی و دارای جرم کم است، در سال ۱۹۳۰ توسط پائولی برای توضیح از انرژی ازدسترفته در فرایند واپاشی رادیواکتیو بتا پیشبینی شد.
در واپاشی بتای مثبت، یک الکترون-نوترینو همراه با یک پوزیترون منتشر میشود، درحالیکه در واپاشی بتا منفی یک الکترون-پادنوترینو با یک الکترون گسیل میشود.
آشکارساز نوترینو – کپیرایت: Kamioka Observatory
بوزونها
بوزونها شامل مزونها (مانند پیونها و کائونها)، هستههایی با تعداد جرم زوج (مثلاً هلیوم-۴) و ذرات مورد نیاز برای وجود میدانهای نظریه میدان کوانتومی (مانند فوتونها و گلوئونها) هستند.
بوزونها با فرمیونها بسیار متفاوت هستند. یکی از مهمترین تفاوت آنها در پیروی از اصل طرد پائولی است. بوزونها از این اصل پیروی نمیکنند و درنتیجه تعداد نامحدودی از ذرات با یک حالت کوانتومی همزمان در یکجا میتوانند قرار بگیرند.
فوتونها
فوتون یا کوانتای نور، بسته انرژی تابش الکترومغناطیسی است. این ذره در سال ۱۹۰۵ در مبحث اثر فوتوالکتریک توسط آلبرت انیشتین بیان شد و پیش از این در سال ۱۹۰۰ فیزیکدان آلمانی، «ماکس پلانک»، مسیر را برای تعریف فوتون هموار کرده بود. او توضیح داد که تشعشعات گرما در واحدهای مجزا یا کوانتومی ساطع و جذب میشوند.
همه فوتونها با سرعت نور حرکت میکنند. فوتونها بوزونهایی هستند که بار الکتریکی و جرم سکون ندارند و دارای یک واحد اسپین هستند. تصور میشود فوتونها ذرات میدانی باشند که حامل میدان الکترومغناطیسی هستند.
بوزونها عددی (Gauge Bosons)
نظریه نیروهای الکترومغناطیسی و ضعیف وجود یک حامل خنثی را برای نیروی ضعیف پیشبینی میکند. این حامل خنثی به نام Z صفر، بایستی واسطه برهمکنشهای جریانهای خنثی، یعنی فعل و انفعالات ضعیفی که در آن بار الکتریکی بین ذرات منتقل نمیشود، باشد. جستوجو برای شواهدی که اعتبار نظریه الکتروضعیف را تأیید میکند، در اوایل دهه ۱۹۷۰ بهطور جدی آغاز شد.
بوزون هیگز؛ ذره خدا
با پیداشدن ذره گمشده مدل استاندارد یعنی «بوزون هیگز» (Higgs Boson) توسط محققان در «سِرن» (CERN) در سال ۲۰۱۲، این مدل به موفقیت چشمگیری دست یافت.
بوزون هیگز ذره اصلی حامل نیرو در میدان هیگز است که وظیفه اعطای جرم به سایر ذرات را دارد. این میدان اولینبار در اواسط دهه شصت توسط «پیتر هیگز» پیشنهاد شد که به افتخار این پیشنهاد، این ذره به نام او ثبت شد.
LHC یا شتابدهنده عظیم هادرونی واقع در سِرن، وجود میدان هیگز و مکانیزمی که منجر به داشتن یا نداشتن جرم می شود را تأیید کرد. درحالحاضر بهترین توصیفی که از دنیای عجیب زیراتمیها داریم، همین مبحث است.
بوزون هیگز دارای جرمی معادل ۱۲۵ میلیارد الکترون ولت است؛ یعنی ۱۳۰ برابر جرم یک پروتون. همچنین این ذره دارای اسپین صفر است. بوزون هیگز تنها ذره بنیادی است که اسپین ندارد.
آشکارساز اطلس؛ شتابدهنده هادرونی سرن – کپیرایت: Getty Images
مدل استاندارد؛ پاسخ نهایی یا نظریهای ناکامل
مدل استاندارد با وجود اینکه بهترین توصیف درزمینه توضیح ذرات زیراتمی و نیروهای بنیادی است، هنوز بهعنوان نظریه استاندارد شناخته نشده. به عبارتی دیگر مدل استاندارد به پازل شبیه است؛ پازلی که چند تکه آن که به ذرات تشکیلدهنده ماده تاریک و نوترینو جرمدار مربوط است، فعلاً پیدا نشده، اما مابقی تکهها بهخوبی جای خود را در این مدل پیدا کردهاند.
آنچه به قطع میتوانیم بگوییم این است که مدل استاندارد، مدل نهایی برای توضیح جهان و ساختار آن نیست. این مدل نمیتواند درباره گرانش و وجود این همه ذره پاسخ صریحی ارائه دهد و یا تحقیقات جدید درزمینه کیهانشناسی درباره ماده تاریک و انرژی تاریک، هیچکدام در این مدل نمیگنجد.
اگرچه محققان بر این باورند که در آینده و در پروژههای جدید، صلاحیت کلی مدل استاندارد مشخص خواهد شد.
سلب مسئولیت: منبع این مطلب این سایت بوده و باز نشر توسط سایت مدیک بلاگ بر مبنای تایید بر محتوای آن نمی باشد.